**Problem**

A color reduction is a mapping from a set of discrete colors to a smaller one.
The solution to this problem requires that you perform just such a mapping in
a standard twenty-four bit RGB color space. The input consists of a target set
of sixteen RGB color values, and a collection of arbitrary RGB colors to be
mapped to their closest color in the target set. For our purposes, an RGB color
is defined as an ordered triple (R,G,B) where each value of the triple is an
integer from 0 to 255. The distance between two colors is defined as the Euclidean
distance between two three-dimensional points. That is, given two colors (R1,G1,B1)
and (R2,G2,B2), their distance D is given by the equation

The input file is a list of RGB colors, one color per line, specified as three integers from 0 to 255 delimited by a single space. The first sixteen colors form the target set of colors to which the remaining colors will be mapped. The input is terminated by a line containing three -1 values.

**Output**

For each color to be mapped, output the color and its nearest color from the
target set.

**Example**

**Input**

0 0 0 255 255 255 0 0 1 1 1 1 128 0 0 0 128 0 128 128 0 0 0 128 126 168 9 35 86 34 133 41 193 128 0 128 0 128 128 128 128 128 255 0 0 0 1 0 0 0 0 255 255 255 253 254 255 77 79 134 81 218 0 -1 -1 -1

** Output**

(0,0,0) maps to (0,0,0) (255,255,255) maps to (255,255,255) (253,254,255) maps to (255,255,255) (77,79,134) maps to (128,128,128) (81,218,0) maps to (126,168,9)