A partition of a positive integer N is a sequence of integers which sum to N, usually written with plus
signs between the numbers of the partition. For example
15 = 1+2+3+4+5 = 1+2+1+7+1+2+1
A partition is palindromic if it reads the same forward and backward. The first partition in the example
is not palindromic while the second is. If a partition containing m integers is palindromic, its left half is
the first floor(m/2) integers and its right half is the last floor(m/2) integers (which must be the
reverse of the left half. (floor(x) is the greatest integer less than or equal to x.)
A partition is recursively palindromic if it is palindromic and its left half is recursively palindromic or
empty. Note that every integer has at least two recursively palindromic partitions one consisting of all
ones and a second consisting of the integer itself. The second example above is also recursively
palindromic.
For example, the recursively palindromic partitions of 7 are:
7, 1+5+1, 2+3+2, 1+1+3+1+1, 3+1+3, 1+1+1+1+1+1+1
Write a program which takes as input an integer N and outputs the number of recursively palindromic
partitions of N.
