# Triangles

How many triple of points \(A(x_A, y_A), B(x_B, y_B), C(x_C, y_C)\) which:

\(x_A, y_A, x_B, y_B, x_C, y_C \in \mathbb{Z}\)

\(0 \leq x_A, x_B, x_C < n, 0 \leq y_A, y_B, y_C < m\)

\(S_{\triangle ABC} \not\in \mathbb{Z}\)? (\(S_\triangle\) denotes the area of triangle)

Two integers \(n\) and \(m\).

(\(1 \leq n, m \leq 10^9\))

## Output

The only integer denotes the number possible triples, modulo \(10^9 + 7\).

`2 2 `

## Sample output

`24`

## Note

There are \(4\) triangles. Each of them is counted \(6\) times.

## Source

Contest #3 on acdream oj by ftiasch